Chapter 5 Section 5.4

Def: If α is an angle whose terminal side passes through the unit circle at (x, y) we define the **tangent**, **cotangent**, **secant**, and **cosecant** functions as:

$$\tan(\alpha) = \frac{y}{x}, \cot(\alpha) = \frac{x}{y}, \sec(\alpha) = \frac{1}{x}, \text{ and } \csc(\alpha) = \frac{1}{y}$$

Alternate Def: Recall if α is an angle whose terminal side passes through the unit circle at (x, y), then $\sin(\alpha) = y$ and $\cos(\alpha) = x$. This gives us alternate definitions for the above functions by:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}, \ \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}, \ \sec(\alpha) = \frac{1}{\cos(\alpha)}, \ \text{and} \ \csc(\alpha) = \frac{1}{\sin(\alpha)}$$

Ex: Find the value of all six trigonometric for $\alpha = \pi/4$ and $\beta = 150^{\circ}$

Q: What are the domains of these new functions? **Graph of** y = tan(x)

Graph of $y = \cot(x)$

Graph of $y = \sec(x)$

 ${\bf Graph \ of} \ y = \csc(x)$

Ex: Graph $y = 2 \sec(x - \pi/2)$

Practice: 8, 13, 18, 22, 55, 59, 73, 75